일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- ES6
- spring
- Test Coverage
- C++
- jQuery
- data structure
- log4j2
- 스프링
- 자료구조
- 리액트
- Deep Learning
- Machine Learning
- 제이쿼리
- bean
- annotation
- transformer
- AWS
- javascript
- 구버전
- 테스트 커버리지
- 어노테이션
- JPA
- react
- spring boot
- 스프링 부트
- kotlin
- cache
- 하이브리드앱
- Java
- 자바스크립트
Archives
- Today
- Total
목록딥러닝 (1)
박서희연구소

Deep Learning의 관심사가 왜 높아졌는지, 그래프를 그리면 쉽게 설명할 수 있다. 가로 축은 어떤 task에 대한 데이터의 양(label이 있는 데이터)을 나타내며, 세로 축은 학습 알고리즘의 성능을 나타낸다. 스팸 메일 분류기, 광고 클릭 수 예상의 정확도, 자율 주행 자동차가 다른 차량의 위치를 파악할 때(Neural Network의 정확도같은)를 예를 들 수 있다. Traditional learning algorithm의 성능은 데이터를 추가하는 동안 성능이 향상되지만, 어느정도 지나면 성능이 정체기에 이름(방대한 데이터로 무엇을 해야 할지 모름) Neural Network의 규모가 커짐에 따라 훈련시킬 수 록 성능이 좋아짐 규모는 Neural Network의 크기, Hidden Unit(..
○ Programming [AI]/Theory
2024. 2. 5. 10:53